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Characterization of Strip Line Crossing by
Transverse Resonance Analysis

TOMOKI UWANO, MEMBER, IEEE, ROBERTO SORRENTINQ, SENIOR MEMBER, IEEE,
AND TATSUO ITOH, FELLOW, IEEE

Abstract —A method of analysis is described for characterizing the
discontinuities made of two orthogonally crossed strip lines on a suspended
substrate. The method of analysis is based on the generalized transverse
resonant technique extended here to four-port configurations. The tech-
nique is used for determination of resonant structure at a given frequency
and subsequently the equivalent circuit parameters of the discontinuities.

I. INTRODUCTION

TRIP LINE CROSSINGS of the multilayer printed
Scircuit board are commonly used in digital circuit
design. As the signal frequency gets higher due to high-
speed processors, an accurate -wave analysis of the
characteristics of the crossing becomes important. In
addition, the crossing of strips on both sides of the sus-
pended substrate often appears in microwave and millime-
ter-wave integrated circuits [1]. To date little has been
reported on the exact analysis of such structures.

The problem presented here is to characterize the
discontinuities of two orthogonally crossed strip lines. The
structure to be analyzed is shown schematically in Fig. 1
along with the coordinate system. It is assumed that the
structure is lossless. Two strip lines are crossed orthogonally
on opposite sides of the substrate. Auxiliary conducting
planes are added.to convert the structure to a closed one.
It is assumed that each pair of opposing side walls does
not influence the electromagnetic fields guided by the strip
parallel to the walls but only the field guided along the
orthogonal directions. This assumption is valid as long as
the field remains confined in the proximity of the two strip
lines. Thus, surface wave and radiation phenomena are
excluded. The auxiliary walls are used for field analysis
purposes. They permit the structure to be analyzed as a
rectangular waveguide discontinuity problem.

The method of analysis is based on the generalized

“transverse resonance technique” introduced for finline

step discontinuity problems [2]. The technique is extended
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Fig. 1. Structure of the problem.

here to a four-port configuration treated in this paper. The
method consists of two parts. First, the resonant structure
created by auxiliary walls is described in terms of network
representation containing a reactive four-port. For a fixed
resonant frequency, we try to find as many resonator
configurations. as required for extraction of four-port
matrix elements. The second part of the analysis is a
full-wave electromagnetic field analysis in - which the .
resonant frequency is found as an eigenvalue problem. In
this part of the analysis, the problem is viewed as one of
waveguide scattering for waves traveling in the direction
normal to the substrate surface. -

II. CIRCUIT REPRESENTATION

In this section, a procedure for a two-port resonance
method. [3] is extended to a four-port configuration. The
crossing between the two suspended strip lines can be
represented as a four-port network at some reference
planes. Reference planes can be placed at any position as
long as they are on the continuous part of the transmission
line. Each port is terminated with a reactance correspond-
ing to the line section between the reference plane and the
auxiliary wall, as shown in Fig. 2. The network equations

for the entire circuit are expressed in matrix form as

[[Z]+diag[Zi]][1]=0 (1)

where [ Z] is the impedance matrix of the four-port network
normalized with respect to the characteristic impedance at
each port. Zi(i=1,2,3,4) are the normalized terminal
impedances: Zi= jtan Bili, with /i(i=1,2,3,4) the strip
line lengths between the reference planes and the auxihary
walls. [I] is the vector of the currents Ji(i=1,2,3,4) as
shown in Fig. 2. In the absence of losses, [ Z] is imaginary
and the resonant frequency is real. The resonant frequency
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Fig. 2. Four-port network for the problem.

is obtained from the condition that the voltages and cur-
rents be nontrivial in the absence of sources. From (1), this
condition is

det [ 2]+ diag [ Zi] || = 0. )

The values of the Zi’s can be specified once the distance
to the wall is fixed while the Z parameters are to be
determined. The impedance matrix of a reciprocal four-port
lossless network possesses in general ten independent
imaginary parameters. In the present case, however,
because of the symmetry of the structure, only five
parameters are needed to characterize the Z matrix:

V1 Z11 7212 713 Z13 |1 1

V2 Z12 7211 Z13 Z13 || 12 (3)
V3 Z13 Z13 Z33 Z34 | I3}

V4 Z13 Z13 Z34 Z334i14

From (3), the resonant condition of (2) can be written in
the following form:

{(z11+ 21)(Z11+ Z22) - Z12?)}
{(Z33+ 23)(Z33+ z4) - 7342}
- =4Z13*{Z11 - Z12+(Z1+ 22) /2}
{233~ 234+(Z3+ Z4)/2) =0. (4)

Now we can show that by properly choosing the terminal
impedance Zi’s, the resonant conditions are simplified so
that the problem is solved analytically. First, let us choose
the terminal impedances in a symmetrical way, i.e., [1=1[2
and [3=/4 so that Z1=2Z2 and Z3=Z4. If these
conditions are applied, (4) can be factorized in the form

(Z11+ Z1— Z712)(Z33+ Z3— Z34)
A( 211+ 212+ Z1)(Z33+ Z34+ Z3)—-4Z13*} =0. (5)
Thus

Z11+71-2712=0 (6)
or

Z33+ Z3-734=0 (7)
or

(z211+ 212+ Z1)(Z33+ Z34+ Z3)-4213*=0. (8)

With each factor in (5) equated to zero, the eigenvalues
for the matrix in (1) are obtained; each ecigenvalue w is
then the resonant frequency under the condition of the
corresponding eigenvector of the currents. When the first
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Fig. 3. Equivalent circuits for an odd resonance. (a) Strip 1. (b) Strip 2.

factor in (5) is equated to zero, i.e., (6) is satisfied, the
eigenvector of (1) is I1=—-172 and I3=1I14=0. This
condition corresponds to the odd resonance of the struc-
ture shown in Fig. 3(a). The structure behaves as if an
electric wall were placed symmetrically along the center of
strip line 2. For the given resonant frequency, the required
resonance condition provides the quantity Z11 — Z12 for a
given value of Z1. Similarly, when (7) is satisfied, an odd
resonance of strip line 2 is obtained, and the structure for
this condition is shown in Fig. 3(b). Finally, from (8), the
eigenvector for an even resonance is obtained: I'l= 12 and
13 = I4. Substitution of these conditions into (3) yields the
two-port network matrix equation

Z13 11
Z33+Z34HI3]' ®)

The use of symmetry, therefore, has reduced the four-
port network problem to that of a two-port. For a given
resonant frequency, three different pairs of Z1 and Z3
(with Z1=Z2 and Z3 = Z4) are used to provide three
quantities Z11’, Z12" and Z22’ which denote the elements
of the matrix in (9):

[Vl] _ [211+ 7122
V3 2713

Z1V=Z11+ 712
Z22' =733+ Z34
Z12'=2713.

(10)
(11)
(12)
Combining the results with those for the two structures in
Fig. 3, we obtain all five Z parameters. For the procedure
illustrated above, we must know the propagation constants
of the two isolated strip lines, i.e., 1 and B83. The quan-
tities are necessary to obtain Z1 and Z3:

Z1= jtan Bl(a —w2)/2

Z3= jtan B3(b—wl) /2.

(13)
(14)

These expressions are obtained for a specific choice of the
reference planes, as shown in Fig. 4. As the reference
planes are placed close to the discontinuity, negative
capacitors or inductors may appear in an equivalent circuit
representation. The field analysis can be also used to
determine 1 and B3. This can be done simply by setting
Bl=m/a and B3=m/b at a specified resonant frequency
for the isolated strip line.

It is important to find an equivalent circuit repre-
sentation of the four-port structure so that it is most
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Fig. 6. Subregions for fields analysis. (a) Region (D). (b) Region (3). (©)
Region (2).

convenient for the present analysis. For the structure in
Fig. 1, one possible equivalent circuit representation could
be chosen as shown in Fig..5. The circuit already takes the
symmétry properties into account. Zc is used to represent

" the coupling capacitance between the two strips. Zp + Zp
and Zg + Zq represent the inductances associated with the
two strip line sections, while Za and Zb represent the two
strip-to-ground capacitances.

- The S matrix for a four-port network is obtained from

the relation

[s1=[[z]+[u] (]~ [V]] (15)

where [U] is a unit matrix.

III. FIELD ANALYSIS

The resonant structure of Fig. 1 can be subdivided into
three homogeneous regions as shown in Fig. 6. In terms of
the TE-to-z and TM-to-z representations; the hybrid fields
in each homogeneous region in the resonator structure are

1371
as follows:
- region (1): Ml<gz<g0
M N
EtV=-Y% [Amn(l)vtxpmn Xz ‘
+ Bin™( Bmn®/ 5, )7 tomn| sin Bmn®(z + Hl)
(16)

MN :
Ht =Y 3 [ Amn®(Bmn®/2, )vtymn

m o n
+ Bmn Vv tpmn X z | cos BmnV(z + hl) (17)
region (2): t<z<¢
 M'N :
Et® ==Y Y [Amn®vtymn x z

m n
+ Brm®(Bmn @/, )vigmn] sin fmn@(z - c)

(18)
M N
H®=3% ) [ Amn®(Bmn® /2, ) tymn

(19)

+ anf?)Vttpmn Xz] cos Brmn®(z — c)
region (3)' 0<z

Et® = — E }: [{Cmn sin an @)y

m n
+ Dmn sin ana)‘(z - t) yvipmn xz
+ { Fmnsin Bmn®z + Gmn sin fmn®(z — 1)}
(Bmn®/$;)vipmn (20)
: M N
HY=Y Y [{ Cmn cos Bmn®z + Dmn cosan‘”(z -1)}

noono

(Bmn® 5\ tymn
+ { Fmn cos Bmn®z + Gmn cos Bmn® v
(z=1)}vigmnXz] (21)
where
mmx nwy
ymn= Pmn cos( )cos( )
a
mmx nmwy
pmn = Pmn sm( ) ( )
a
P m8n 1 1’ =0
= ke B {2, i%0
mar\2
ket (—) {5
a
Brn® = (kP —ke?)'”, =123

A A

b= Jug, Z;= jop, kizz—yizi

where AmnV, Amn®@, Bmn®, Bmn®, Cmn, Dmn, Fmn,
and Gmn are unknown coefficients, z is a z-directional
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unit vector, and the superscripts in parentheses refer to the
respective regions.

The boundary conditions at each interface are as fol-
lows:

interface (I): at z=10

Et, = Et; on S (22)
Et,=Et,=0 on S1 (23)
Ht,— Hi, = {AHf @ onsl (24)
0 on §—S1
interface (II): at z=1¢
Et, = E1, on S (25)
Et,=FEt,=0 on §2 (26)
AH!® on S2

H, — Hr, = 27

2 { 0 on S— 82 @7)

where A Ht (i =1,2) are unknown functions of x, y. These
functions are expanded in terms of a set of known
orthogonal vector functions x»( defined over Si with
unknown coefficients Py

AHI® =Y pyyy® (28)

(29)

Inserting (16) ~ (21) into (22) ~ (27) and making use of
the orthogonal properties of Vtymn and Vipmn, we
obtain a homogeneous system of equations in terms of the
unknown coefficient Pr:

AHt® =) PpPxp®,

Yim Yam

2 PyOUw ™ + 3 Pr@Uw ™ =0, p=1,2,3,...,5y
2 vy
(30)
Yim Yam
Y Py DU + 3 PyOUw® =0, p=1,2,3,..., 755
71 0]
(31)
where
M N
U}LV(I/) = Z ZSa { amn(”)gmn, ;L(’)Smn, (D
m n
— (B(’)/)?,)bmn(’”l?mn, p(')ﬂmn, ») } ,
i,j=1,2 (32)
Emn,u(”=fxu("~vt¢mnds, i=1,2
St
Omn,u(’)=fx,u(’)-vt(pmands, i=1,2.
Si

The quantities amn®), bmn"*/), ¢{mn,p, and Omn, p are
described in the Appendix.

The condition for nontrivial solution determines the
characteristic equation of the given structure. This equation
may be regarded as a function of w, /1, /3, equated to zero:

flw,1,13) = 0. (33)
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Fig. 7. Convergence of the resonant frequency of an isolated strip line.

For a given value of w = w,, (33) can be solved to evaluate
the different pairs of /1 and /3 giving rise to the same
resonant frequency w,. These values of /1 and /3 can be
used for computing the discontinuity parameters discussed
in the previous section.

IV. CoMPUTED RESULTS

In accordance with the technique described above, the
electromagnetic fields in each region are expressed in
terms of the series expansions. In the numerical compu-
tation, only a finite number of terms can be retained in the
series expansions. The number of terms was chosen in such
a way that the highest spatial frequencies of the
electromagpetic field are approximately the same in the
transverse directions (x, y). The current on a strip line is
expanded in such a way that the distributions of each
component (Jx,Jy) in the transverse direction are ex-
pressed by only the first term and that the distributions in
the longitudinal direction are expressed by a set of terms,
the number of which is the same on each strip line.

The method is first tested by computing the resonant
frequency of the isolated strip line with certain structural
parameters. Fig. 7 shows the convergence of the resonant
frequency with respect to the number of terms of the field
expansions in the homogeneous region of Fig. 6. The
numbers M, N were chosen to be the same in both the x
and y directions. The results exhibit very good agreement
with those by the spectral domain approach [4] in which
the resonant frequency was calculated from the propa-
gation constant. The field was represented by the same
number of harmonics in both this method and the spectral
domain approach. Fig. 8 shows the convergence of the
resonant {requency of the crossing strip line structure with
respect to the number » of current expansion terms in the
longitudinal direction. From Fig. 8, we could observe a
fast convergence characteristic with a relatively small num-
ber of current expansions if the electromagnetic field is
well expressed by an adequate number of harmonics.

In the computations, the substrate was placed sym-
metrically between the top and bottom planes with both
strips having the same widths. Hence, the impedance matrix
representation of the discontinuities has Z11= Z33 and
Z12 = Z34. The element values for the equivalent circuit
calculated at three different frequencies are quoted in
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TABLEI
FELEMENT VALUES OF EQUIVALENT CIRCUIT
05GHz | 1GHz 2GHz
=L_q 0.331nH 0.331nH 0.329nH
Ca=Cb -0.0885pF -0.103pF -0.101pF
Cc 0.249pF 0.272pF 0.258pF
MN 400 200 100
v 20 20 20
Z0Z
Lp=Lg=— p.
Jjw
Ca=Ch=——.
JjwZ0Za
1
Ce= JwZ0Zce'

Zp, Zq, Za, Zb, Zc¢: normalized impedance.

Z0: Strip line characteristic impedance (159.2.159.1,158.3 2 at0.5,1,2
GHz).

hl=h2=5mm; t=1 mm.

wl=w2=1 mm: ¢ =38

Table I, along with the structural parameters used in the
computations, where the reference planes were defined in
the same manner as in Fig. 4. Fig. 9 shows the correspond-
ing S parameters of the discontinuities. Note that the
elements for Za and Zb(= Za) are capacitors with a
negative value. This is acceptable because they compensate
the parallel distributed capacitance for the isolated strip
line in the absence of the other strip line. In other words,
the strip-to-ground capacitance of the line section between
ports 1 and 2 becomes positive with the combination of
Za, Zb, Zc and the fringingcapacitances at the open ports
3 and 4. The uniqueness of the solution with respect to the
different sets of {/1,/2,13,14} was also tested, and the
same results were obtained with an accuracy better than
that by the convergence.

Zc was also calculated with A1 =10 mm, 42 =100 mm,
t=5 mm, wl=w2=04 mm, ¢,=1 at 2 GHz, simulating
the crossing model of the work by Giri et al. [5]. The result
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Fig. 10. Current distribution on the strip line. (a) Longitudinal current.

(b) Transverse current ( continued on next page)

for the value of Cc was 0.082 pF, while the value of the
coupling capacitor Cm as defined in [5] was estimated to
be 0.15 pF by using the equivalent radius.

Fig. 10(a) and (b) shows the longitudinal and transverse
components of the current densities at the center of the
strip at the three different frequencies. In Fig 10(a), it 1s
observed that each figure was of perturbed cosine form.



1374

a=30mm
MN = 100
V=20

@ 2 GHz

1.0

Relative Amplitude

=~ 107.9 mm
MN =200
Vv =20
@ 1GHz

10

a=232.1 mm
MN =400
V=2

@ 0.5 GHz

0 — >

Relative Longitudinal Distance

(b)

Fig. 10. (Continued).

This feature is anticipated from an observation that the
strip line whose length is slightly shorter than half a
wavelength turns out to be a resonator with capacitive
loading at the center of the strip line. The longitudinal
current may therefore be represented by the combination
of a cosine and an additional polynomial function [6] so
that the computation time can be reduced. As to the
transverse current shown in Fig. 10(b), the figures are not
readily characterized. This implies that thé current function
requires a number of terms of basis functions.

Fig. 11(a), (b), and (c) shows the computed results for
different values of the strip line width and the substrate
thickness.

V. CONCLUSIONS

A method of analysis has been described for characteriz-
ing the discontinuities of two crossed strip lines. The
method is based on the generalized transverse resonance
technique for computing the resonant frequency of a
resonator created by enclosing the crossing with perfectly
conducting auxiliary walls. This resonator problem is
analyzed as one of waveguide scattering for waves travel-
ing in the direction normal to the substrate surface. For a
specified frequency, resonant structures are found by
adjusting the lengths of the strips and hence the resonator
size. These structures are used for deriving the equivalent
circuit parameters characterizing the discontinuity.

This method can also be applied for the characterization
of strip line-slotline transition.

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-33, NO. 12, DECEMBER 1987

054 w=15 mm
024 w=1.5 mm 0.4 _—
- 10
& g
B 10 £ 034
{=4
S 514 05 = g, 05
o]
0 T T T 0 T T T
0 05 10 15 0 05 10 1s
t {mm] t [mm]
(® (b)

0 ST

04 :
— w=15mm
o,
=
6 0 3_ \___—_

10

027 //_’_— 05

0.14

0 T T

0 05 10 15
t [mm)]
©
Fig. 11. Element values versus strip line width and substrate thickness.

(a) Ca.(b) Lp.(c) Cc.

APPENDIX
A. Derivation of Elements in Fig. 5

The relations between the elements of (3) and the
normalized impedances of the equivalent circuit in Fig. 5
are

Za(Zb+ Zc)
Z=2Zp+ o2
Za+ Zb+ Zc
Za(Zb+ Zc)
Z12= ——
Za+Zb+ Zc
ZaZb
Z13 = ——m—+
Za+Zb+ Zc
Zb(Ze+ Za)
Z3B=Zg+ ———
Za+7Zb+ Zc
Zb(Zc+ Za)
234" "7
Za+ Zb+ Zc
Hence
Z13% — 7212734
Za= "
Z13— Z34
Z13% ~ 212734
Zh=" T
Z13—Z12
Z13% - 712734
e ——"
Z13
Zp=2711-2712

Zgq=733-2734.
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B. Derivation of (32) amn® = — Ka(1/S,)( BVCt, + OCt,)

The H field on the strip is expanded in terms of known Kao=?% 2 _ gt BOCt, + BVOCt
basis functions x» with unknown coefficients Pr. Actually, ¢ Z/{ B B‘ 3(B . p 1)
what will be expanded is the H field discontinuity which is ~ BVBACHCt, |
equal to Jt X z, viz.,

qu 2 viz bmn™ = Kb(1/5,)(BOCt, + (e /¢,) BACt,)
v max bmn? = Kb(1/(8,8;))(e3/¢€,) 8P
AHt=' Z PVXII=JI><:z. ( /( 1 3))( 3/ Z)B
» bmn® = — Kb(1/(8,55))(e3 /) BP

bmn®® = — Kb(1/S. OCt + (e Oy
The basis functions are chosen in such a way that the field % 2)('3 1t (e/0)B 3)

is gonzero onlyb on thedstrip.h Additional boundary Kb =B%/[(e;/e,)(e5/¢,) BVBP — BOCr,
conditions must be satisfied at the strip ends where the a o)

strip lines are terminated with electric walls. The ficld may ’ {(63/ €)BOCH +(e5/¢0)B Ctl}
be expanded in terms of the basis functions of two dif- - 5(3)2@1&2]

ferent types. One of them consists of harmonic basis W e )
functions, the other of singular basis functions. The singu- Sy, 83, 83 = sin 1, sin BOh2,sin 1

lar behavior of the magnetic field component normal to C,,C,, Cy = cos VK1 cos BPh2,cos B

the strip line edges is incorporated in the singular basis

functions. They are therefore expected to provide a faster Ct, €1y, €ty = €1 /81, 6,/5,, G /5,

numerical convergence. 2= jwp,
For the H field expansion on S1, the following set is ma a
employed: ExD =~ Pmn—a— 58rmHI (s,n,wl,b)
nw o a
x| sw (b-wl) ¢y® = — Pmn— —8mSI(s,n,wl, b)
X P, =sin—sin|—y—— b &m ’
a wl 2 ma b
s (b~ wl)} Ex?P=— Pmn—a— E—SsnSI(r,m,wZ,a)
o rax <% | wl {y 2 o nw b
Xy ps =CO8 —— 2 = - P — —8snHI ,m, 2,
v 4 \/’ {(y b/2)}2 . &y mn=——dsn (r,m,w2,a)
- — nT a
) wl/2 0x(1)=Pmn—b- EBrmHI(s,n,wl,b)
. . . . mmT a
where the subscript rs is used instead of n for representing Oy® = — Pmn— 6——8rmSI (s,n,wl, b)
a 8m

the variations in the two orthogonal directions. Similar

expansions are employed for the H field on $2. 0x® = P b SnSI(r. m, w2. a)

The quantities in (32) are as follows: b on
mw b
amn®™ = Ka(1/8,)( BOCt, + 3(3)(:13) 6y® = — Pmn— —2-8anI(r, m,w2,a)
a
amn(l2)=Ka(]‘/(S1S3))B(3) 8_ O’ l?é]
amn® = — Ka(1/(5,5,))B® Y=\1, i=j
HI(s,n,wl, b)
wl  (s—n)7 n_ s
= sin 3 for Pl
(s7T/wl) nw(b—wl) _, na(b+wl) nos
= 5 > | cos —(-1) " cos —————= for —# —
(sm/w1)y —(nm/b) 2b 2b b wl
SI(s,n,wl,b)
=0 n+s:even
1 ~-s—1 1 +s5s—1 n sy wl
=T (n s )Jo (m[*ivi)_vg_ +@-——le]0 (l+—1)~—) 'n+s:odd
4 (-1) b wl/ 2 (-1) b wl) 2
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