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Abstract - A method of analysis is described fa,r characterizing the

dkconthudties madeof two orthogonally crossed strip lines on a suspended

substrate. The method of analysis is based on the generalized transverse

resonant technique extended here to four-port configurations. The tech-

nique is used for determination of resonant stroctnre at a given frequency

and subsequently the equivalent circuit parameters of the discontinuities.

I. INTRODUCTION

sTRIP LINE CROSSINGS of the multilayer printed

circuit board are commonly used in digital circuit

design. As the signal frequency gets higher due to high-

speed processors, an accurate wave analysis (of the
characteristics of the crossing becomes important. In

addition, the crossing of strips on both sides of the sus-

pended substrate often appears in microwave and rxlillime-

ter-wave integrated circuits [1]. To date little has been

reported on the exact analysis of such structures.

The problem presented here is to characterize the

discontinuities of two orthogonally crossedl strip lines. The

structure to be analyzed is shown schematically in Fig. 1

along with the coordinate system. It is assumed that the

structure is lossless. Two strip lines are crossed orthogonally

on opposite sides of the substrate. Auxiliary conducting

planes are added to convert the structure to a closed one.

It is assumed that each pair of opp,osing side walls does

not influence the electromagnetic fields guided by the strip

parallel to the walls but only the field guided along the

orthogonal directions. This assumption is valid as long as

the field remains confined in the proximity of the two strip

lines. Thus, surface wave and radiation phenomena are

excluded. The auxiliary walls are used for field analysis

purposes. They permit the structure to be analyzed as a

rectangular waveguide discontinuity y problelm.

The ‘method of analysis is based on the generalized

“ transverse resonance technique” introduced for finline

step discontinuity problems [2]. The technique is extended
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Fig. 1. Structure of the problem.

here to a four-port configuration treated in this paper. The

method consists of two parts. First, the resonant structure

created by auxiliary walls ‘is described in terms of network

representation containing a reactive four-port. For a fixed

resonant frequency, we try to find as many resonator

configurations as required for extraction of four-port

matrix elements. The second part of the analysis is a

full-wave electromagnetic field analysis in which the

resonant frequency is found as an eigenvalue problem. In

this part of the analysis, the problem is viewed as one of

waveguide scattering for waves traveling in the direction

normal to the substrate surface.

II. CIRCUIT I&PRESENTATION

In this section, a procedure for a two-port resonance

method [3] is extended to a four-port configuration. The

crossing between the two suspended strip lines can be

represented as a four-port network at some reference

planes. Reference planes can be placed at any position as

long as they are on the continuous part of the transmission

line. Each port is terminated with a reactance correspond-

ing to the line section between the reference plane and the

auxiliary wall, as shown in Fig. 2. The network equations

for the entire circuit are expressed in matrix form as

[[ Z]+diag[Zi]][l]=O (1)

where [Z] is the impedance matrix of the four-port network

normalized with respect to the characteristic impedance at

each port. Zi(i = 1,2,3, 4) are ,the normalized terminal

impedances: Zi ==j tan ~ili, with li(i = 1,2,3, 4) the strip

line lengths between the reference planes and the auxiliary
walls. [1] is the vector of the currents Ii(i =1,2,3,4) as

shown in Fig. 2. h-r the absence of losses, [Z] is imaginary
and the resonant frequency is real. The resonant frequency
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Fig. 2. Four-port network forthe problem.

is obtained from the condition that the voltages and cur-

rents be nontrivial in the absence of sources. From (l), this

condition is

detll[Z] +diag[Zi]ll=O. (2)

The values of the Zi’s can be specified once the distance

to the wall is fixed while the Z parameters are to be

determined. The impedance matrix of a reciprocal four-port

lossless network possesses in general ten independent

imaginary parameters. In the present case, however,

because of the symmetry of the structure, only five

parameters are needed to characterize the Z matrix:

Hi
V1

1[1
211 212 213 213 11

V2 212 211 Z13 213 12

V3 = 213 213 Z33 234 13 “
(3)

V4 213 213 234 233 14

From (3), the resonant condition of (2) can be written in

the following form:

{(211+ 21)(211+ 22)- 212’}

.{(Z33+ Z3)(Z33+Z4)-Z34’}

. –4213’{211– Z12+(Z1+ 22)/2}

. {233- 234+(23+ Z4)/2} =0. (4)

Now we can show that by properly choosing the terminal

impedance Zi ‘s, the resonant conditions are simplified so

that the problem is solved analytically. First, let us choose

the terminal impedances in a symmetrical way, i.e., 11=12

and 13 = 14 so that 21 = 22 and 23 = 24. If these

conditions are applied, (4) can be factorized in the form

(211 +21 - Z12)(Z33+ 23- 234)

. {(211+ 212+ 21)(233+ 234+ 23)-4213’}= o. (5)

Thus

Z1l+Z1– Z12=0 (6)

or

233+23–234=0 (7)

or

(211+ 212+ 21)(233+ 234+ 23)-42132= O. (8)

With each factor in (5) equated to zero, the eigenvalues

for the matrix in (1) are obtained; each eigenvalue o is

then the resonant frequency under the condition of the

corresponding eigenvector of the currents. When the first

L_!)i
Z1 VI 211-212

(a)

O_JlZ3 v: Z33-Z34

(b)

Fig. 3. Equivalent circuits for an odd resonance, (a) Strip 1. (b) Strip 2,

factor in (5) is equated to zero, i.e., (6) is satisfied, the

eigenvector of (1) is 11= – 12 and 13 = 14 = O. This

condition corresponds to the odd resonance of the struc-

ture shown in Fig. 3(a). The structure behaves as if an

electric wall were placed symmetrically along the center of

strip line 2. For the given resonant frequency, the required

resonance condition provides the quantity 211 – 212 for a

given value of 21. Similarly, when (7) is satisfied, an odd

resonance of strip line 2 is obtained, and the structure for

this condition is shown in Fig. 3(b). Finally, from (8), the

eigenvector for an even resonance is obtained: 11= 12 and

13= 14. Substitution of these conditions into (3) yields the

two-port network matrix equation

[1[n _ 211+ 2122 1[1213 rl
V3 – 2213 233 + 234 13 “

(9)

The use of symmetry, therefore, has reduced the four-

port network problem to that of a two-port. For a given

resonant frequency, three different pairs of 21 and Z3

(with 21= 22 and 23= 24) are used to provide three

quantities 211’, 212’ and 222’ which denote the elements

of the matrix in (9):

211’ = 211+ 212 (lo)

222’ = 233+ 234 (11)

Z12’=2Z13. (12)

Combining the results with those for the two structures in

Fig. 3, we obtain all five Z parameters. For the procedure

illustrated above, we must know the propagation constants

of the two isolated strip lines, i.e., /31 and ~ 3. The quan-

tities are necessary to obtain 21 and 23:

21= jtan~l(a – w2)/2 (13)

23= jtan~3(b– wl)/2. (14)

These expressions are obtained for a specific choice of the

reference planes, as shown in Fig. 4. As the reference

planes are placed close to the discontinuity, negative

capacitors or inductors may appear in an equivalent circuit

representation. The field analysis can be also used to

determine ~1 and ~3. This can be done simply by setting

~1 = rr/a and ~3 = ~\b at a specified resonant frequency

for the isolated strip line.

It is important to find an equivalent circuit repre-

sentation of the four-port structure so that it is most
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reference planes as follows:

region (l): M < z <0

b

~~)

S2, B3 Et(l) = – f f [’4rnn%t@nn X2
17zn

WI SI
t31 Ib+ +f3mn(1)(~nm(l)/jl)VRpnm]sin&m(1)(2 + hl)

Y (16)
ox +-----+a

W2 &
2 Hi(l) = f f [Amn(l)(flmn(l)/21 )vt+mn

Fig. 4. A choice of reference plane (top view).
*1 }1

+ Bmn(l)Vtqmn XZ] cosPtin(lJ(z + Al) (17)

1

2

??%7?727

region (2): t < Z < C

Et@~ = – ~ ~ [Amnc2)vt#mri XZ :

‘“(+ MWZ(2) &m(2)/j2 )VtQmn] sin @mn(2)(z – c)

(18)

Fig. 5. Equivalent circuit for the problem.
Htc2) = ~ ~ [Amn(2)(~mtif2)/?2)vtrjmn

mn

+ Bmn(2)vtrprnn X z] cos~nzn(2)(z – c)

‘% ‘% ;&7 i.’

(19)

region (3)” O < z < t

z’ z- T c4+h2 )?t }1
z

-hl<z SO o<z<t t<z<c
+ Dnznsin@mn(’)(z – t)}vt~mn Xz

(a) (b) (c)
+ { Fmn sin /3mn(3)z -t Gmn sin flmn(3)(z – t) )

Fig. 6. Subregions for fields analysis. (a) Region (l). (b) Region (3). (c) .( /?nzn(3)j_93)Vtq3mn (20)
Region (2).

lit(’)= f ~[{Cmncos/3mn(3)z +Dmncos~mn(3)(z -t)}

convenient for the present analysis. For the structure in

Fig. 1, one possible equivalent circuit representation could

be chosen as shown in Fig. 5. The circuit already takes the

symmetry properties into account. Zc is used to represent

the coupling capacitance between the two strips. 2p + 2P

and Zq + Zq represent the inductances associated with the

two strip line sections, while Za and Zb represent the two

strip-to-ground capacitances.

The S matrix for a four-port network is obtained from

the relation

:~/3rnn(3)/i3)V f#mn

+ { Fmn cos /3mn (3)z + Gmn cos ~mn (3)

(z-l) }vtqmnXz] (21)

where

‘mn=pm’cos(%)cos(?
‘mn=pmnsin(Y)sin(%)

[s] = [[z]+ [u]]-’[[z] -[lV]] (15)

r

~m~n 1
Pmn =

(,
81= ~, i=o

—-
ab kc’ i+O

where [U] is a unit matrix.

kc2=(:12+(%)2 .-

111. FIELD ANALYSIS ~mm(’) = (kf – kc2)1’2, i=l,2,3

The resonant structure of Fig. 1 can be subdivided into ji = jti<i fi = j~pi kf = – ;i~i
three homogeneous regions as shown in Fig. 6. In terms of

the TE-to-z and TM-to-z representations, the hybrid fields where Amn ~~~,Amn~2~, Bmn~l~, Bmn ~2),Cmn, Dmn, ,Fmn,

in each homogeneous region in the resonator structure are and Gmn are unknown coefficients, z ,is a Z-directional ~
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unit vector, and the superscripts in parentheses refer to the

respective regions.

The boundary conditions at each interface are as fol-

lows:

interface (I): at z = O

Etl = Etz on S (22)

Etl = Et3 = O on S1 (23)

(Ht3 – Htl = ‘~(1) on S1 (24)
on S–Sl

interface (II): at z = t

Efz = Et3 on S (25)

Etz = Et3 = O on S2 (26)

{
Ht2 – Ht3 = ‘~(2) on S2 (27)

on S–S2

where AHt f‘) ( i =1,2) are unknown functions of x, y. These

functions are expanded in terms of a set of known

orthogonal vector functions xv”) defined over Si with

unknown coefficients P v(’):

AHt(’J ==~pv(l)#)

v

AHt~2) = ~pv(2)x,(2).

(28)

(29)

Inserting (16) - (21) into (22) - (27) and making use of

the orthogonal properties of v t + mn and v t ~mn, we

obtain a homogeneous system of equations in terms of the

unknown coefficient P v:

?,l M U2 M

~ pV(l)f@V(”) + ~ hJ(2)U/-W(12) = O, p=l,2,3,..., VIM

VI h{ V2,!4

~ pv(’)u~v(’” + ~pV(2)@J(22) = O, p=l,2,3,..., V2M

where

Upv(’J) = ~ ‘f S,{amn(’J)<mn3p(L)<nzn, V(J)
111 H

- (~(’)/~,)brnn(’/)@mn, p(’)6rnn, v(J)}

i,j=l,2 (32)

(,imn, p,(z) = J~,Xp(’).VtTmn x zds, i=l,2.

The quantities amn(’ l), bmn(’J ), ~~n, p, and emn, p are

described in the Appendix.

The condition for nontrivial solution determines the

characteristic equation of the given structure. This equation

may be regarded as a function of o, 11, 13, equated to zero:

f(u,ll,13)=o. (33)

2020-1

h
g 1960

~

: 1940 1/
. This method

u+
~ 1920

0

2
1900

]/
x

x SDA

1880 ~ “ 1 I I I I 1
0 100 200 300

Number of Terms MN

Fig. 7. Convergence of the resonant frequency of an isolated strip line.

For a given value of u = w,, (33) can be solved to evaluate

the different pairs of 11 and 13 giving rise to the same

resonant frequency u,. These values of U and 13 can be

used for computing the discontinuity parameters discussed

in the previous section.

IV. COMPUTED I&ULTS

In accordance with the technique described above, the

electromagnetic fields in each region are expressed in

terms of the series expansions. In the numerical compu-

tation, only a finite number of terms can be retained in the

series expansions. The number of terms was chosen in such

a way that the highest spatial frequencies of the

electromagnetic field are approximately the same in the

transverse directions (x, y). The current on a strip line is

expanded in such a way that the distributions of each

component ( Jx, Jy) in the transverse direction are ex-

pressed by only the first term and that the distributions in

the longitudinal direction are expressed by a set of terms,

the number of which is the same on each strip line.
The method is first tested by computing the resonant

frequency of the isolated strip line with certain structural

parameters. Fig. 7 shows the convergence of the resonant

frequency with respect to the number of terms of the field

expansions in the homogeneous region of Fig. 6. The

numbers M, N were chosen to be the same in both the x

and y directions. The results exhibit very good agreement

with those by the spectral domain approach [4] in which

the resonant frequency was calculated from the propa-

gation constant. The field was represented by the same

number of harmonics in both this method and the spectral

domain approach. Fig. 8 shows the convergence of the

resonant frequency of the crossing strip line structure with

respect to the number v of current expansion terms in the

longitudinal direction. From Fig. 8, we could observe a

fast convergence characteristic with a relatively small num-

ber of current expansions if the electromagnetic field is

well expressed by an adequate number of harmonics.

In the computations, the substrate was placed sym-

metrically between the top and bottom planes with both

strips having the same widths. Hence, the impedance matrix

representation of the discontinuities has 211 = 233 and

212 = 234. The element values for the equivalent circuit

calculated at three different frequencies are quoted in
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Fig. 8. Convergence of the resonant frequency of crossing strip lines.

TABLE I

ELEMENT VALUES OF EQUIVALENT CIRCUIT

I ! 0.5GHz I lGHz I 2GHz !

LP=L-q 0.331nH 0.331nH

s~

0.329nH

-0.0885pF -0.103pF -0.10lpF

Q 0.249pF 0.272pF 0.258pF

m 400 200 100

v 20
20 k_l

Zozp
Lp=Lq=-

iu
‘1

cu=cb=-
jmZOZu ’

1

cc=—.
jmZOZc

Zp, Zq, Zu. Zb, Zc norrnahzed impedance.
ZO: Strip line characteristic impedance (159.2 .159.1,158.3 Q iit 0.5,1,2

GHz).
hl=h2=5 mm; t=lrnm.

w1= W2 =1 mm: c, = 3.8.

Table I, along with the structural parameters used in the

computations, where the reference planes were defined in

the same manner as in Fig. 4. Fig. 9 shows the correspond-

ing S parameters of the discontinuities, Note that the

elements for Za and Zb ( = Za ) are capacitors with a

negative value. This is acceptable because they compensate

the parallel distributed capacitance for the isolated strip

line in the absence of the other strip line. In other words,

the strip-to-ground capacitance of the line section between

ports 1 and 2 becomes positive with the combination of

Za, Zb, Zc and the fringingcapacitances at the open ports

3 and 4. The uniqueness of the solution with respect to the

different sets of {11, 12,13, 14} was also tested, and the
same results were obtained with an accuracy better than

that by the convergence.
Zc was also calculated with hl = 10 mm, h2 = 100 mm,

t = 5 mm, WI= W2 = 0.4 mm, ~,= 1 at 2 GHz, simulating

the crossing model of the work by Giri et al. [5]. The result

j 1.0

S13

2GFLz

1

l.o~ ~ 1,0

~,2/ :5
Sll 2GHz

1
-jl. O

Fig. 9. s parameters of the discontinuities of the structure.

10. a=1079mm

MN= 200

V=20

o-
@ 1 GHz

1.0 a = 232.1 mm

MN= 400

V=20

r@05GHz

o-

-1:0 J

ReIative Longitudinal Distance

(a)

Fig. 10, Corrcnt distribution on the strip line. (a) Longitudinal current.

(b) Transverse current (continued on nexrpuge)

for the value of Cc was 0.082 pF, while the value of the

coupling capacitor Cm as defined in [5] was estimated to
be 0.15 pF by using the equivalent radius.

Fig. 10(a) and (b) shows the longitudinal and transverse

components of the current densities at the center of the

strip at the three different frequencies. In Fig 10(a), it is

observed that each figure was of perturbed cosine form.
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Relative Longitudinal Distance

(b)

Fig. 10. ( C’mitrftued ).

This feature is anticipated from an observation that the

strip line whose length is slightly shorter than half a

wavelength turns out to be a resonator with capacitive

loading at the center of the strip line. The longitudinal

current may therefore be represented by the combination

of a cosine and an additional polynomial function [6] so

that the computation time can be reduced. As to the

transverse current shown in Fig. 10(b), the figures are not

readily characterized. This implies that the current function

requires a number of terms of basis functions.

Fig. n(a), (b), and (c) shows the computed results for

different values of the strip line width and the substrate

thickness.

V. CONCLUSIONS

A method of analysis has been described for characteriz-

ing the discontinuities of two crossed strip lines. The
method is based on the generalized transverse resonance

technique for computing the resonant frequency of a

resonator created by enclosing the crossing with perfectly

conducting auxiliary walls. This resonator problem is

analyzed as one of waveguide scattering for waves travel-

ing in the direction normal to the substrate surface. For a

specified frequency, resonant structures are found by

adjusting the lengths of the strips and hence the resonator

size. These structures are used for deriving the equivalent

circuit parameters characterizing the discontinuity.

This method can also be applied for the characterization

of strip line–slotline transition.

I 05j w.15mm

0! ‘ r o~
o 05 10 15 0 05 10 15

t [mm] t [mm]

(a) (b)

0,11
L——l——T

o 05 10 15

t [mm]

(c)

Fig. 11. Element values versus strip line width and substrate thickness.

(a) Cu. (b) Lp. (c) Cc.

APPENDIX

A. Derivation of Elements in Fig. 5

The relations between the elements of (3) and the

normalized impedances of the equivalent circuit in Fig. 5

are

Za(Zb + Zc)
211 = Zp +

Za+Zb+Zc

Za(zb+zc)
212 =

Za+zb+zc

Za.Zb
213 =

Za+Zb+Zc

Zb(Zc+Za)
233 = Zq +

Za+Zb+Zc

Zb(Zc+ Za)
234 =

Za+Zb+Zc”

Hence

2132 – 212234
Za =

213 – 234

2132 – 212234
Zb z

213 – 212

2132 – 212234
zc=–

213

Zp = 211– 212

Zq = 233– 234.
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B. Derivation of (32)

The H field on the strip is expanded in terms of known

basis functions xv with unknown coefficients Pv. ,4ctually,

what will be expanded is the H field discontinuity which is

equal to Jt X z, viz,,

v max

A~t = ~ Pvxv= Jt X,2.
v

The basis functions are chosen in such a way that the field

is nonzero only on the strip. Additional boundary

conditions must be satisfied at the strip ends where the

strip lines are terminated with electric wallls. The field may

be expanded in terms of the basis functions of two dif-

ferent types. One of them consists of harmonic basis

functions, the other of singular basis functions. The singu-

lar behavior of the magnetic field component normal to

the strip line edges is incorporated in the singular basis

functions. They are therefore expected to provide a faster

numerical convergence.

For the H field expansion on S1, the following set is

employed:

rvx

[{

S7T
x$),$ = sin —

(b- wl)
sin — y–——

a WI ‘ 2 11
rvx

x :),, = Cos —. . u

1{ (b -- w1)
Cos ~ y–——

2 }1

IS*{ }

~(_ (Y- b/’2) r——
Wlfi!

where the subscript rs is used instead of n for representing

the variations in the two orthogonal directions. lSimilar

expansions are employed for the H field cm S2.

The quantities in (32) are as follows:

anm(ll) = Ka (l/S1 )( ~ ‘2)Ct2 + /3(3)Ct3 )

amn(12) = Ka(l/(SlS3))~(3)

awm(21) = – Ka(l/(S2S3))~(3)

amn(22) = – Ka (1/S2)( ~fl)Ctl + /?(3)Ct3 )

Ku= 2/{ ~(3)2 – /3(3)Ct3(fl(2)Ct2 + fl(l)Ctl)

- /3(’@ @)ct,ct2 }

bmn(ll) = Kb(l/S1)(~(3)Ct2 + (c3/e2)~(2JCt3 )

bmn(12) = Kb(l/(SlS3))(c3 /cz)/1(2)

bmn(21) = – Kb(l/(S2S3))(c3 /(1)~(1)

bwm(22) = – Kb(l/S2)(P(3)Ci1 + (c3/c1)~(l)Ct3)

Kb = ~(3)/[(t3/~1)(~ 3/~2)~(1)~(2) – /3(3)Ct3

“{(63 \61)P(1)ct2+(63/f2)P(2)ct,}

-- /9@)*ct,ct2]

S1, S2, S3 = sin /?(l)hl, sin @2)h2, sin/3(3)1

Cl, C2, C3 = ~OS@l)hl,cos@2)h2, COS ~(3)t

Ctl , ct2 , ct3 = cl/s~ , c.#2 , c3/s3

2= jwpo

mw a
&r(l) = -- Pmn7y8rmHI(s, n, wl, b)

$Y(l) = - f’mn~&~rmSI(s, n,yl, b)

&(2) = - Pmn~$&nSI(r, m, w2, a)

~Y(2) = - Pinny ~~snHI(r, m, w2, a)

HI(s, n,wl, b)

/

WI (s-n)7r
= — sin

2 2

(snT/wl) ~ nn’(b-wl)

\

.,/

[

nn(b+ wl)
.

(.s~/wl)2-(nn/b)2 Cos 2b
--(-1 )-’COS Zb

SZ(s, n, wl, b)

(=0

i#j
i=j

for~=~

for~#~

n+s: even
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